\qquad
\qquad

1. Solve these inequalities.
a) $3 x+8<24$
$6 y=2 x+12$
2. Determine the x-intercept and y-intercept for the following:
b) $\quad-6 x \geq 24$
3. Draw the graph for the following inequalities and shade the feasible region.
a) $2 x+4 y \geq 16$
b) $y \geq 2 x-1$ and $y<x+5$

4. What system of linear inequalities is shown here? Write your answer in set notation.

5. A toy company makes two types of stuffed animals, cats and dogs, and it wants to maximize profit. A cat takes 1.5 hours to assemble and 0.5 hours to package. A dog takes 2 hours to assemble and 0.25 hours to package. A maximum of 60 hours is spent on assembly, and a maximum of 20 hours is spent on packaging.

The company makes a profit of $\$ 5$ on the cat and $\$ 6$ on the dog.
a. Define the variables and state the restrictions for this situation.
b. Write the constraints as a system of linear inequalities.
c. Write the objective function.
\qquad
Foundations of mathematics 11
Period:
6. The following model represents an optimization problem. Graph the constraints and determine the values of x and y that will maximize the value of the objective function, R.

Restrictions:

$x \in \mathrm{~W}, y \in \mathrm{~W}$
Constraints:

$$
x \leq 6 \quad x+2 y \leq 10
$$

Objective function:

$R=12 x+11 y$

7. Bob builds and sells sheds. He uses 10 sheets of plywood and 15 pieces of wood to build a small shed and 15 sheets of plywood and 45 pieces of wood to build a large shed. He has 60 sheets of plywood and 135 pieces of wood.

- If Bob makes a profit of $\$ 390$ on a small shed and $\$ 520$ on a large shed, which combination of sheds should he build in order to maximize his profit?

$$
\begin{aligned}
& x=\text { small sheds } \\
& y=\text { large sheds }
\end{aligned}
$$

The constraints and graph are already included for you:

$$
\begin{array}{ll}
10 x+15 y \leq 60 & x \geq 0 \\
15 x+45 y \leq 135 & y \geq 0
\end{array}
$$

a) Draw the graph. Don't forget to label it.
b) List the intersection points of the feasible region.
c) Write the profit equation:

\qquad

d) What is the maximum profit? \qquad
e) How many small sheds should Bob build in order to maximize his profit? \qquad
f) How many large sheds should Bob build in order to maximize his profit? \qquad

Test Review (Chapter 5) RF1
Foundations of mathematics 11
\qquad
Period:

SOLUTIONS:

1. Solve these inequalities.
a) $3 x+8<24$

b) $-6 x \geq 24$

2. Determine the x-intercept and y-intercept for the following. $6 y=2 x+12$

3. a)

b)

$$
\begin{aligned}
& \text { Testpt }(0,0) \\
& 0 \geqslant 2(0)-1 \\
& \begin{array}{l}
0 \geqslant-1 ? \\
4=5
\end{array} \\
& \text { yen } 10,0) \\
& \begin{array}{l}
\text { Tentpt }(0,0) \\
0 c o t ⿹ . l^{h} \\
0.5
\end{array}
\end{aligned}
$$

\qquad
\qquad
4. What system of linear inequalities is shown here? Write your answer in set notation.

4. $\{(x, y) \mid x+y \leq 2, x>-3, x \in R, y \in R\}$
5. a. Let $x=$ the number of stuffed cats, $x \in W$ Let $y=$ the number of stuffed dogs, $y \in W$
b. assembly: $1.5 x+2 y \leq 60$
packaging: $0.5 x+0.25 y \leq 20$
C. $\mathrm{P}=5 x+6 y$

$$
2 y+x \leq 10
$$

6. $x \leq 6$

$$
y \leq-\frac{1}{2} x+5
$$

Points	$R=12 x+11 y$
$(0,0)$	$\$ 0$
$(0,5)$	$\$ 55$
$(6,2)$	$\$ 94$
$(6,0)$	$\$ 72$

Therefore, the max value of R is $\$ 94$ when $x=6$ and $y=2$.

7

$$
\begin{array}{lc}
\text { a) } 10 x+15 y>60, x \geqslant 10 & 15 x+45 x \leqslant 135, y \geqslant 0 \\
\frac{15 y}{15} \leqslant \frac{-10 x}{15} \frac{+60}{15} & \frac{45 y}{45} \leqslant \frac{-15 x}{45}+\frac{135}{45} \\
y \leqslant-\frac{2}{3} x+4, x \geqslant 0 & y \leqslant-\frac{1}{3} x+3, y \geqslant 0
\end{array}
$$

b) $(6,0) \rightarrow$ Small snead O large sheds
c) $P=390 x+520 y$
d) $\$ 2340 \quad P=390(6)+520(0)$
c) $t \quad P=\$ 2340$
f) 0
 Small Sheds

