TASK 3: Review Polynomial Unit Test

Name:

Multiple Choice: Identify the choice that best completes the statement or answers the question.

1. A large white square represents an x^2 -tile, a black rectangle represents a -x-tile, and a small white square represents a 1-tile.

Write the polynomial represented by this set of algebra tiles.

- $2. How many terms are in the polynomial <math>10x^2 + 5x 11?$ a. 10 b. 1 c. 11 d. 3
- 3. Which of the following expressions is a binomial with degree 2?
 - i) $x^{2}-6x+5$ ii) $3x^{2}$ iii) $5x^{2}-2x$ iv) $\frac{1}{x^{2}}-7$ a. i b. ii c. iv d. iii
 - 4. What algebra tiles would you use to model the polynomial $6 4x^2 + 4x$?
 - a. $6 x^2$ -tiles, 4 x-tiles, and 4 1-tiles
 - b. $2x^2$ -tiles, 4x-tiles
 - c. $4 x^2$ -tiles, 4 x-tiles, and 6 1-tiles
 - d. $4 x^2$ -tiles, 4 x-tiles, and 6 1-tiles
 - 5. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the simplified polynomial.

	$2x^2 + 2$	c. $2x^2 + x + 2$
b.	$-2x^2 + x - 2$	d. $-2x^2 - 2$

6.	Simplify: $10x^2 - 8x^2$ a. $4x^2 - 3x + 3$ b. $4x^2 - 3x - 3$	+ 3x + 5 – 6x ² – 6x	c. $4x^2 + 3x + 3$ d. $4x^4 - 3x^2 - 3$		
7.	Add: $(-3x - 7) + (5 - a) = -5x - 2$		C. $-5x + 2$	d. 5 <i>x</i> + 2	
8. Write the perimeter of this rectangle as a polynomial in simplest form.					
	8 <i>t</i> + 7	4 <i>t</i>			
	a. $12t + 7$	b. 24 <i>t</i> + 14	C. 38 <i>t</i>	d. $24t + 7$	
9.	Subtract: $(6x - 3) - a$. $-5x + 11$		C. $-5x - 5$	d5x-11	
10.	Subtract: $(3x - 7x^2)$ a. $-11x^2 + 3x - 7$ b. $-11x^2 - 9x - 3$	+ 2) - (4x ² - 5 + 6x)	c. $-11x^2 - 3x + 7$ d. $11x^2 + 3x - 7$		
11.	Multiply: $(-2)(4c^2)$ a. $-8c^2 - 12c - 14$ b. $2c^2 - 8c - 9$	– 6 <i>c</i> – 7)	c. $-8c^2 + 12c + 14$ d. $-8c^2 - 6c - 7$		
12.	Divide: $\frac{-12y^2 - 6y}{-3}$ a. $-15y^2 - 9y - 12$ b. $4y^2 + 2y + 3$	<u>- 9</u>	c. $4y^2 - 6y - 9$ d. $-4y^2 - 2y - 3$		

Short Answer

- 13. Identify the polynomials that can be represented by the same set of algebra tiles. i) $v^2 - 4 + 6v$
 - 1) $v^{2} 4 + 6v$ ii) $4 + r^{2} - 6r$ iii) $t^{2} - 6t - 4$ iv) $6x + x^{2} - 4$ v) $y^{2} - 6y + 4$

14. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the polynomial sum modelled by this set of tiles.

15. A large white square represents an x^2 -tile, a white rectangle represents an *x*-tile, and a small white square represents a 1-tile.

Write a division sentence that is modelled by these algebra tiles.

Problem

16. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the polynomial represented by this set of algebra tiles.

- 17. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.
 - a) Sketch algebra tiles to model the polynomial $3x^2 4 + 2x$. Identify the variable, degree, number of terms, coefficient, and constant term.

- 18. Write a polynomial with the given variable, degree, coefficient, and number of terms.
 - a) Variable: p; degree: 2; coefficients: 2, -4; number of terms: 2
 - b) Variable: c; degree: 1; coefficient: 6; number of terms: 1

- 19. A student subtracted like this: $(8x^{2} - 3x + 7) - (5x^{2} + 5x - 5)$ $= 8x^{2} - 3x + 7 - 5x^{2} + 5x - 5$ $= 8x^{2} - 5x^{2} - 3x + 5x + 7 - 5$ $= 3x^{2} + 2x + 2$
 - a) Explain why the solution is incorrect.
 - b) What is the correct answer? Show your work.

TASK 3: Review Polynomial Unit Test Answer Section

MULTIPLE CHOICE

1.	ANS:	С
2.	ANS:	D
3.	ANS:	D
4.	ANS:	С
5.	ANS:	D
6.	ANS:	В
7.	ANS:	Α
8.	ANS:	В
9.	ANS:	В
10.	ANS:	С
11.	ANS:	С
12	ANS:	В
	ANS.	D

SHORT ANSWER

13. ANS:

Parts i and iv can be modelled by the same set of algebra tiles. Parts ii and v can be modelled by the same set of algebra tiles.

14. ANS: $-x^2 + 1$

15. ANS: $(4x^2 + 10x) \div 2x = 2x + 5$

PROBLEM

- 16. ANS: $3x^2 7x + 10$
- 17. ANS:

a) Variable: *x*; degree: 2; number of terms: 3; coefficients: 3, 2; constant term: -4.

18. ANS: a) $2p^2 - 4p$

b) 6c

- 19. ANS:
 - a) The student did not change the signs of +5x and -5 after removing the second pair of brackets.
 - b) Correction:

(8x² - 3x + 7) - (5x² + 5x - 5)= 8x² - 3x + 7 - 5x² - 5x + 5= 8x² - 5x² - 3x - 5x + 7 + 5= 3x² - 8x + 12