\qquad
Multiple Choice: Identify the choice that best completes the statement or answers the question.

1. A large white square represents an x^{2}-tile, a black rectangle represents a $-x$-tile, and a small white square represents a 1 -tile.

Write the polynomial represented by this set of algebra tiles.

a. $3 x^{2}-x^{3}+5$
b. $-3 x^{2}+3 x+5$
c. $3 x^{2}-3 x+5$
d. $3 x-3 x^{2}+5$
2. How many terms are in the polynomial $10 x^{2}+5 x-11$?
a. 10
b. 1
c. 11
d. 3
3. Which of the following expressions is a binomial with degree 2 ?
i) $x^{2}-6 x+5$
ii) $3 x^{2}$
iii) $5 x^{2}-2 x$
iv) $\frac{1}{x^{2}}-7$
a. i
b. ii
c. iv
d. iii
\qquad 4. What algebra tiles would you use to model the polynomial $6-4 x^{2}+4 x$?
a. $6 x^{2}$-tiles, $4-x$-tiles, and 41 -tiles
b. $2 x^{2}$-tiles, $4 x$-tiles
c. $4-x^{2}$-tiles, $4 x$-tiles, and 61 -tiles
d. $4 x^{2}$-tiles, $4-x$-tiles, and $6-1$-tiles
5. A large white square represents an x^{2}-tile, a large black square represents a $-x^{2}$-tile, a white rectangle represents an x-tile, a black rectangle represents a $-x$-tile, a small white square represents a 1 -tile, and a small black square represents a -1 -tile.

Write the simplified polynomial.

a. $2 x^{2}+2$
b. $-2 x^{2}+x-2$
c. $2 x^{2}+x+2$
d. $-2 x^{2}-2$
6. Simplify: $10 x^{2}-8+3 x+5-6 x^{2}-6 x$
a. $4 x^{2}-3 x+3$
b. $4 x^{2}-3 x-3$
c. $4 x^{2}+3 x+3$
d. $4 x^{4}-3 x^{2}-3$
7. Add: $(-3 x-7)+(5-2 x)$
a. $-5 x-2$
b. $-5 x+12$
c. $-5 x+2$
d. $5 x+2$
8. Write the perimeter of this rectangle as a polynomial in simplest form.

a. $12 t+7$
b. $24 t+14$
c. $38 t$
d. $24 t+7$
\qquad 9. Subtract: $(6 x-3)-(11 x-8)$
a. $-5 x+11$
b. $-5 x+5$
c. $-5 x-5$
d. $-5 x-11$
10. Subtract: $\left(3 x-7 x^{2}+2\right)-\left(4 x^{2}-5+6 x\right)$
a. $-11 x^{2}+3 x-7$
b. $-11 x^{2}-9 x-3$
c. $-11 x^{2}-3 x+7$
d. $11 x^{2}+3 x-7$
11. Multiply: $(-2)\left(4 c^{2}-6 c-7\right)$
a. $-8 c^{2}-12 c-14$
b. $2 c^{2}-8 c-9$
c. $-8 c^{2}+12 c+14$
d. $-8 c^{2}-6 c-7$
_12. Divide: $\frac{-12 y^{2}-6 y-9}{-3}$
a. $-15 y^{2}-9 y-12$
b. $4 y^{2}+2 y+3$
c. $4 y^{2}-6 y-9$
d. $-4 y^{2}-2 y-3$

Short Answer

13. Identify the polynomials that can be represented by the same set of algebra tiles.
i) $v^{2}-4+6 v$
ii) $4+r^{2}-6 r$
iii) $t^{2}-6 t-4$
iv) $6 x+x^{2}-4$
v) $y^{2}-6 y+4$
14. A large white square represents an x^{2}-tile, a large black square represents a $-x^{2}$-tile, a small white square represents a 1 -tile, and a small black square represents a -1 -tile.

Write the polynomial sum modelled by this set of tiles.

15. A large white square represents an x^{2}-tile, a white rectangle represents an x-tile, and a small white square represents a 1 -tile.

Write a division sentence that is modelled by these algebra tiles.

Problem

16. A large white square represents an x^{2}-tile, a large black square represents $\mathrm{a}-x^{2}$-tile, a white rectangle represents an x-tile, a black rectangle represents a $-x$-tile, a small white square represents a 1 -tile, and a small black square represents a -1 -tile.

Write the polynomial represented by this set of algebra tiles.

17. A large white square represents an x^{2}-tile, a large black square represents $\mathrm{a}-x^{2}$-tile, a white rectangle represents an x-tile, a black rectangle represents a $-x$-tile, a small white square represents a 1 -tile, and a small black square represents a -1 -tile.
a) Sketch algebra tiles to model the polynomial $3 x^{2}-4+2 x$.

Identify the variable, degree, number of terms, coefficient, and constant term.
18. Write a polynomial with the given variable, degree, coefficient, and number of terms.
a) Variable: p; degree: 2 ; coefficients: $2,-4$; number of terms: 2
b) Variable: c; degree: 1 ; coefficient: 6 ; number of terms: 1
19. A student subtracted like this:

$$
\left(8 x^{2}-3 x+7\right)-\left(5 x^{2}+5 x-5\right)
$$

$$
=8 x^{2}-3 x+7-5 x^{2}+5 x-5
$$

$$
=8 x^{2}-5 x^{2}-3 x+5 x+7-5
$$

$$
=3 x^{2}+2 x+2
$$

a) Explain why the solution is incorrect.
b) What is the correct answer? Show your work.

TASK 3: Review Polynomial Unit Test Answer Section

MULTIPLE CHOICE

1. ANS:

C
2. ANS:

D
3. ANS:

D
4. ANS: C
5. ANS: D
6. ANS: B
7. ANS: A
8. ANS: B
9. ANS: B
10. ANS: C
11. ANS: C
12. ANS: B

SHORT ANSWER

13. ANS:

Parts i and iv can be modelled by the same set of algebra tiles.
Parts ii and v can be modelled by the same set of algebra tiles.
14. ANS:
$-x^{2}+1$
15. ANS:

$$
\left(4 x^{2}+10 x\right) \div 2 x=2 x+5
$$

PROBLEM

16. ANS:

$$
3 x^{2}-7 x+10
$$

17. ANS:
a) Variable: x; degree: 2; number of terms: 3; coefficients: 3, 2; constant term: -4.

$$
\square \square \square \square \square \square \square \square
$$

18. ANS:
a) $2 p^{2}-4 p$
b) $6 c$
19. ANS:
a) The student did not change the signs of $+5 x$ and -5 after removing the second pair of brackets.
b) Correction:

$$
\begin{aligned}
& \left(8 x^{2}-3 x+7\right)-\left(5 x^{2}+5 x-5\right) \\
& =8 x^{2}-3 x+7-5 x^{2}-5 x+5 \\
& =8 x^{2}-5 x^{2}-3 x-5 x+7+5 \\
& =3 x^{2}-8 x+12
\end{aligned}
$$

