TASK 2: Review Polynomial Unit Test

Name:

Multiple Choice: Identify the choice that best completes the statement or answers the question.

1. A large white square represents an x^2 -tile, a black rectangle represents a -x-tile, and a small white square represents a 1-tile.

Write the polynomial represented by this set of algebra tiles.

- 3. Which of the following expressions is a binomial with degree 2?
 - i) $x^{2} 6x + 5$ ii) $3x^{2}$ iii) $5x^{2} - 2x$ iv) $\frac{1}{x^{2}} - 7$ a. i b. ii c. iv d. iii
 - ____ 4. What algebra tiles would you use to model the polynomial $6 4x^2 + 4x$?
 - a. $6 x^2$ -tiles, 4 x-tiles, and 4 1-tiles
 - b. $2x^2$ -tiles, 4x-tiles
 - c. $4 x^2$ -tiles, 4 x-tiles, and 6 1-tiles
 - d. $4 x^2$ -tiles, 4 x-tiles, and 6 1-tiles
 - 5. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the simplified polynomial.

a.	$2x^{2} + 2$	c. $2x^2 + x + 2$
b.	$-2x^{2} + x - 2$	d. $-2x^2 - 2$

6.	Simplify: $10x^2 - 8 + 3x + 5 - 6x^2 - 6x$				
	a. $4x^2 - 3x + 3$		c. $4x^2 + 3x + 3$		
	b. $4x^2 - 3x - 3$		d. $4x^4 - 3x^2 - 3$		
7.	Add: $(-3x - 7) + (5 - 7)$	- 2 <i>x</i>)			
	a. $-5x - 2$	b. −5 <i>x</i> + 12	C. $-5x + 2$	d. $5x + 2$	
8.	Write the perimeter of this rectangle as a polynomial in simplest form.				
		1			
		4 <i>t</i>			
	8 <i>t</i> + 7]			
		1		1	
	a. $12t + 7$	D. $24t + 14$	C. 38 <i>t</i>	d. $24t + 7$	
0	Subtract: (6- 2)	(11~ 0)			
9.	Subtract. $(6x - 3) -$	$(\Pi x = \delta)$	0 5 5	d c u	
	a. $-5x + 11$	03x + 3	c3x - 3	u. $-5x - 11$	
10	Subtract: $(3r - 7r^2)$	$(2) = (4r^2 - 5 + 6r)$			
10.	Subtract. $(J_A = J_A)$	+2)=(4x = 5+0x)	c ++ ² = =		
	a. $-11x^2 + 3x - 7$		$C_{1} = -\frac{1}{1}x^{2} - \frac{3}{2}x + \frac{1}{2}$		
	D. $-11x^2 - 9x - 3$		u. $11x^2 + 3x - 7$		
11	Multiplue $(-2)/4a^2$	60 70			
11.	Numpry. $(-2)(4c)$	-0c - 7)	0 0 2 10 11		
	a. $-8c^2 - 12c - 14$		C. $-8c^2 + 12c + 14$		
	D. $2c^2 - 8c - 9$		u. $-8c^2 - 6c - 7$		
	12.2	0			
12.	Divide: $\frac{-12y - by}{2}$				
	-3 $-15y^2$ 0y 12		$C 4v^2 - 6v 0$		
	a. $-15y - 3y - 12$		-4y - 0y - y		
	D. 4y + 2y + 3		a. −4y ² − 2y − 3		

Short Answer

- 13. Identify the polynomials that can be represented by the same set of algebra tiles. Sketch Tiles!
 - i) $v^2 4 + 6v$ ii) $4 + r^2 - 6r$ iii) $t^2 - 6t - 4$ iv) $6x + x^2 - 4$ v) $y^2 - 6y + 4$

14. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the polynomial sum modelled by this set of tiles.

15. A large white square represents an x^2 -tile, a white rectangle represents an *x*-tile, and a small white square represents a 1-tile.

Write a division sentence that is modelled by these algebra tiles.

16. Here is a student's solution for this question: Multiply: 4x(-3x-5)

```
4x(-3x-5) = -12x^2 - 20
```

Identify any errors in the solution.

Problem

17. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.

Write the polynomial represented by this set of algebra tiles.

- 18. A large white square represents an x^2 -tile, a large black square represents a $-x^2$ -tile, a white rectangle represents an *x*-tile, a black rectangle represents a -x-tile, a small white square represents a 1-tile, and a small black square represents a -1-tile.
 - a) Sketch algebra tiles to model the polynomial $3x^2 4 + 2x$. Identify the variable, degree, number of terms, coefficient, and constant term.
 - b) Write another polynomial that is equivalent to the polynomial in part a. Explain how you know that the polynomials are equivalent.

- 19. Write a polynomial with the given variable, degree, coefficient, and number of terms.
 - a) Variable: *p*; degree: 2; coefficients: 2, –4; number of terms: 2
 - b) Variable: c; degree: 1; coefficient: 6; number of terms: 1

20. Identify the equivalent polynomials. Explain how you know.

i)
$$3x^2 + 3x - 4 + 2x^2 - 6x - 3$$

ii) $x^2 + 12 + 2x - 5 - 5x + 4x^2$
iii) $3x^2 - 6x + 2x^2 + 3 + 3x - 10$

21. A student subtracted like this:

$$(8x2 - 3x + 7) - (5x2 + 5x - 5)$$

= 8x² - 3x + 7 - 5x² + 5x - 5
= 8x² - 5x² - 3x + 5x + 7 - 5
= 3x² + 2x + 2

a) Explain why the solution is incorrect.

b) What is the correct answer? Show your work.

TASK 2: Review Polynomial Unit Test Answer Section

MULTIPLE CHOICE

1.	ANS:	С
2.	ANS:	D
3.	ANS:	D
4.	ANS:	С
5.	ANS:	D
6.	ANS:	В
7.	ANS:	А
8.	ANS:	В
9.	ANS:	В
10.	ANS:	С
11.	ANS:	С
12.	ANS:	В

SHORT ANSWER

13. ANS:

Parts i and iv can be modelled by the same set of algebra tiles. Parts ii and v can be modelled by the same set of algebra tiles.

- 14. ANS: $-x^2 + 1$
- 15. ANS: $(4x^2 + 10x) \div 2x = 2x + 5$

16. ANS:

Error:

-5 should be multiplied by 4x to give -20x.

PROBLEM

- 17. ANS: $3x^2 7x + 10$
- 18. ANS:

a) Variable: *x*; degree: 2; number of terms: 3; coefficients: 3, 2; constant term: -4.

b) $3x^2 + 2x - 4$; I know the polynomials are equivalent because they can be represented by the same algebra tiles.

- 19. ANS: a) $2p^2 - 4p$
 - b) 6c

20. ANS: i) $3x^2 + 3x - 4 + 2x^2 - 6x - 3$ $= 3x^2 + 2x^2 + 3x - 6x - 4 - 3$ $= 5x^2 - 3x - 7$ ii) $x^2 + 12 + 2x - 5 - 5x + 4x^2$ $= x^2 + 4x^2 + 2x - 5x + 12 - 5$ $= 5x^2 - 3x + 7$ iii) $3x^2 - 6x + 2x^2 + 3 + 3x - 10$ $= 3x^2 + 2x^2 - 6x + 3x + 3 - 10$ $= 5x^2 - 3x - 7$

Polynomials i and iii are equivalent because they are the same polynomial in simplified form.

21. ANS:

- a) The student did not change the signs of +5x and -5 after removing the second pair of brackets.
- b) Correction:
 - (8x² 3x + 7) (5x² + 5x 5)= 8x² - 3x + 7 - 5x² - 5x + 5= 8x² - 5x² - 3x - 5x + 7 + 5= 3x² - 8x + 12