\qquad
\qquad 1. What is the degree of a quadratic function?
a. 1
b. 2
c. 3
d. 0
2. What is the y-intercept for $y=3 x^{2}+2 x-5$?
a. -5
b. 5
c. 2
d. 3
3. Which set of data is correct for this graph?

a. Set A.
b. Set B.
c. Set D.
d. Set C.

Set	Axis of Symmetry	Vertex	Domain	Range
A.	$x=-2$	$(-2,6)$	$x \in \mathrm{R}$	$y \in \mathrm{R}$
B.	$x=-6$	$(-6,-2)$	$-8 \leq x \leq 4$	$-8 \leq y$
C.	$x=-2$	$(-2,-6)$	$x \in \mathrm{R}$	$-6 \leq y$
D.	$x=2$	$(2,6)$	$-6 \leq x \leq 2$	$-6 \leq \mathrm{y}$

4. What are the x - and y-intercepts for the function $f(x)=x^{2}+5 x+6$?
a. $x=-4, x=-2, y=6$
b. no x-intercepts, $y=6$
c. $x=-2.5, y=6$
d. $x=-3, x=-2, y=6$
\qquad 5. The points $(-2,4)$ and $(1,4)$ are located on the same parabola. What is the equation for the axis of symmetry for this parabola?
a. $x=-0.5$
b. $x=-1$
c. $x=0.5$
d. $x=-1.5$
\qquad 6. Find the zero's of: $x^{2}-5 x=-4$
a. $x=-4, x=1$
b. $x=-4, x=-1$
c. $x=4, x=-1$
d. $x=4, x=1$
5. What is the correct quadratic function for this parabola?

\qquad 8. What is the correct quadratic function for this parabola?

a. $f(x)=(x-1)(x+3)$
b. $f(x)=(x+1)(x+3)$
c. $f(x)=-(x+1)(x-3)$
d. $f(x)=(1-x)(3-x)$
6. Which set of data is correct for the quadratic relation $f(x)=4(x-0.5)(x+1)$?

	\boldsymbol{x}-intercepts	y-intercept	Axis of Symmetry	Vertex
A.	$(-0.5,0),(1,0)$	$y=-2$	$x=0.25$	$(0.25,-1.25)$
B.	$(0.5,0),(-1,0)$	$y=-2$	$x=-0.25$	$(-0.25,-2.25)$
C.	$(-0.5,0),(1,0)$	$y=0.5$	$x=0.5$	$(0.5,0)$
D.	$(0.5,0),(-1,0)$	$y=-0.5$	$x=-0.5$	$(-0.5,-2)$

a. SetD.
b. SetB.
c. Set A.
d. SetC.
10. Which relation is the factored form of $f(x)=x^{2}+2 x-3 ?$
a. $f(x)=x(x+2)+3$
b. $f(x)=(x-2)^{2}$
c. $f(x)=(x+3)(x-1)$
d. $f(x)=(x-3)(x+1)$
11. Which relation is the factored form of $f(x)=-3 x^{2}-3 x+6 ?$
a. $f(x)=3(x+2)(1-x)$
b. $f(x)=-3(x+2)(x-1)$
c. $f(x)=(3 x-3)^{2}$
a. $y=2 x-4 x^{2}-5$
d. $f(x)=-3(x+3)^{2}$
b. $y=2+4 x-5 x^{2}$
c. $y=4-2 x^{2}-5 x$
12. Solve $25 x^{2}-36=0$ by factoring.
d. $y=-5 x+4 x^{2}+2$
a. $x=\frac{6}{5}, x=-\frac{6}{5}$

- 15. What are the x - and y-intercepts for the function $f(x)=x^{2}-2 x+3$?
b. $x=-6, x=5$
c. $x=6, x=-6$
a. no x-intercepts, $y=3$
d. $x=\frac{5}{6}, x=-\frac{5}{6}$
b. $x=0, x=3, y=2$
c. $x=-1, x=3, y=3$
d. $x=-3, x=1, y=3$
\qquad 16. Which set of data is correct for this graph?

| | Axis of Symmetry | Vertex | Domain | Range |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A. | $x=3$ | $(3,2)$ | $x \in \mathrm{R}$ | $2 \leq y$ |
| B. | $x=3$ | $(2,3)$ | $x \in \mathrm{R}$ | $y \in \mathrm{R}$ |
| C. | $x=2$ | $(2,3)$ | $-1 \leq x \leq 7$ | $2 \leq y$ |
| D. | $x=3$ | $(3,2)$ | $-2 \leq x \leq 8$ | $0 \leq y$ |

Short Answer

17. If a parabola with equation $y=a x^{2}+b x+c$ opens downward, will a be positive or negative?
18. If a parabola with equation $y=a x^{2}+b x+c$ has a y-intercept above the x-axis, will c be positive or negative?
19. Fill in the table for the relation $y=-x^{2}+1 x+12$.

y-intercept	
x-intercept(s)	
Axis of symmetry	
Vertex	
Domain	
Range	

20. Make a table of values, then sketch the graph of the relation $y=x^{2}-x+7$.
21. Fill in the table for the relation $y=x^{2}-6 x-4$. USE GRAPHING CALCULATOR!

Maximum or minimum	
Axis of symmetry	
Vertex	

22. Solve $x^{2}-8 x+15=0$ by graphing the corresponding function and determining the zeros (without a graphing calculator).
23. Determine the roots of the corresponding quadratic equation for the graph.

24. A quadratic function has an equation that can be written in the form $f(x)=a(x-r)(x-s)$. The graph of the function has x-intercepts at $(3,0)$ and $(6,0)$ and passes through the point $(7,-4)$. Write the equation of the function.
25. Fill in the table for the quadratic function $f(x)=-(x-4)(x-6)$.

y-intercept	
Zeros	
Axis of symmetry	
Vertex	

26. Sketch the graph of the relation $y=(x-4)(x-6)$, then state the domain and range.
27. Determine the equation that defines a quadratic function with x-intercepts located at $(4,0)$ and $(12,0)$ and a y-intercept of $(0,-24)$. Provide a sketch to support your work.
28. Solve $4 x^{2}+15 x+9=0$ by factoring. 29. Solve $x^{2}+3 x=-4 x-12$ using the quadratic formula.

Verify your solution

Problems

30. A skier's jump can be modelled by the function $y=-4.9 x^{2}+3.2 x+2.5$, where y is the skier's height above the ground, in metres, and x is the time, in seconds, that the skier is in the air.
a) Use technology to sketch graph the function from your graphing calculator.
b) Determine the coordinates of the vertex.
c) Determine the skier's maximum height in metres.
d) Determine the domain and range of this function.
31. Determine the equation for this quadratic function. Write the equation in standard form. Show all your steps.

32.
33. Graph $y=x^{2}+2 x+1$ and state the following:

Vertex	
Max or Min??	
Axis of	
Symmetry	
y-intercept	
Domain	
Range	
x-intercepts	
Zeros	
Roots	
Factored form	

Create a table of values!

33. Use the discriminant to determine the number of roots:
a) $y=2 x^{2}-4 x-1$
b) $y=x^{2}+4 x+100$

RF2 Unit Test Review

MULTIPLE CHOICE

1. ANS: B
2. ANS: A
3. ANS: D
4. ANS: D
5. ANS: A
6. ANS: D
7. ANS: C
8. ANS: C

Answer Section

9. ANS: B

10.	ANS:	C
11.	ANS:	B
12.	ANS:	A
13.	ANS:	D
14.	ANS:	D
15.	ANS:	A
16.	ANS:	A

12. ANS: A
13. ANS: D
14. ANS: D
15. ANS: A
16. ANS: A

SHORT ANSWER

17. ANS:
negative
18. ANS:
positive
19. ANS:

y-intercept	$(0,12)$
\boldsymbol{x}-intercept(s)	$4 \&-3$
Axis of symmetry	$x=0.5$
Vertex	$(0.5,10.25)$
Domain	$x \in \mathrm{R}$
Range	$y \geq 10.25$

20. ANS:

\boldsymbol{x}	\boldsymbol{y}
-2	13
-1	9
0	7
1	7
2	9
3	13

21. ANS:

Maximum or minimum	minimum
Axis of symmetry	$x=3$
Vertex	$(3,-13)$

22. ANS:
$x=5, x=3$
23. ANS:

There are no roots.
24. ANS:
$f(x)=-(x-3)(x-6)$
25. ANS:

y-intercept	$y=-24$
Zeros	$(4,0),(6,0)$
Axis of symmetry	$x=5$
Vertex	$(5,1)$

26. ANS: $x \in \mathrm{R}, y \leq 1$

27. ANS:
$y=-0.5(x-4)(x-12)$

28. ANS:
$x=-\frac{3}{4}, x=-3$
29. ANS:
$x=-4, x=-3$
30. ANS:
a)

b) $(0.33,3.0)$
c) The skier's maximum height is 3.0 m .
d) Domain: $0 \leq x \leq 1.1$

Range: $0 \leq y \leq 3.0$
31. ANS:

The x-intercepts are $(-5,0)$ and $(-2,0)$, so $r=-5$ and $s=-2$.
The graph opens upward so $a>0$.
$y=a(x-r)(x-s)$
$y=a[x-(-5)](x-(-2))$
$y=a(x+5)(x+2)$

The y-intercept is $(0,20)$.

$$
\begin{aligned}
& y=a(x+5)(x+2) \\
& 20=a(0+5)(0+2) \\
& 20=10 a \\
& 2=a \\
& \text { So, } y=2(x+5)(x+2)
\end{aligned}
$$

In standard form:

$$
\begin{aligned}
& y=2(x+5)(x+2) \\
& y=2\left(x^{2}+5 x+2 x+10\right) \\
& y=2 x^{2}+14 x+20
\end{aligned}
$$

32.
33. Graph $y=x^{2}+2 x+1$ and state the following:

Create a table of values!

x	y
-2	1
-1	0
0	1
1	4
2	9

33. Use the discriminant to determine the number of roots:
a) $y=2 x^{2}-4 x-1$
b) $y=x^{2}+4 x+100$
$b^{2}-4 a c$
$b^{2}-4 a c$
$(-4)^{2}-4(2)(-1)$
$(4)^{2}-4(1)(100)$
$16-(-8)$
16-400
+24 (2 roots)
-384 (no roots)
