Name:_

RF2 Unit Test # 2 Review – Quadratics (Chapter 6)

- 1. What is the degree of a quadratic function?
 - a. 1 b. 2 c. 3 d. 0
 - 2. What is the v-intercept for $y = 3x^2 + 2x 5$?
 - a. –5
 - **b.** 5
 - c. 2
 - d. 3
- 3. Which set of data is correct for this graph?

3 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		5 x		a. b. c. d.	Set A. Set B. Set D. Set C.
	Set	Axis of Symmetry	Vertex	Domain	Range
	Α.	x = -2	(-2, 6)	$x \in \mathbf{R}$	$y \in \mathbf{R}$
\ -3/†	В.	x = -6	(-6, -2)	$-8 \le x \le 4$	$-8 \le y$
\ _4+	С.	x = -2	(-2, -6)	$x \in \mathbf{R}$	$-6 \le y$
	D.	x = 2	(2, 6)	$-6 \le x \le 2$	$-6 \le y$

- 4. What are the *x* and *y*-intercepts for the function $f(x) = x^2 + 5x + 6$? a. x = -4, x = -2, y = 6 b. no x-intercepts, y = 6 c. x = -2.5, y = 6 d. x = -3, x = -2, y = 6
- 5. The points (-2, 4) and (1, 4) are located on the same parabola. What is the equation for the axis of symmetry for this parabola?

a. x = -0.5 b. x = -1 c. x = 0.5 d. x = -1.5

a. x = -4, x = 1b. x = -4, x = -1c. x = 4, x = -1d. x = 4, x = 1

_____7. What is the correct quadratic function _____8. What is the correct quadratic function for this parabola?

9. Which set of data is correct for the quadratic relation f(x) = 4(x - 0.5)(x + 1)?

	x-intercepts	y-intercept	Axis of Symmetry	Vertex
A.	(-0.5, 0), (1, 0)	y = -2	x = 0.25	(0.25, -1.25)
В.	(0.5, 0), (-1, 0)	y = -2	x = -0.25	(-0.25, -2.25)
C .	(-0.5, 0), (1, 0)	y = 0.5	x = 0.5	(0.5, 0)
D.	(0.5, 0), (-1, 0)	y = -0.5	x = -0.5	(-0.5, -2)

- 10. Which relation is the factored form of $f(x) = x^2 + 2x 3?$
 - a. f(x) = x(x + 2) + 3b. $f(x) = (x - 2)^2$ c. f(x) = (x + 3)(x - 1)d. f(x) = (x - 3)(x + 1)
- 11. Which relation is the factored form of $f(x) = -3x^2 3x + 6$?
 - a. f(x) = 3(x + 2)(1 x)b. f(x) = -3(x + 2)(x - 1)c. $f(x) = (3x - 3)^2$ d. $f(x) = -3(x + 3)^2$
- _____ 12. Solve $25x^2 36 = 0$ by factoring.
 - a. $x = \frac{6}{5}, x = -\frac{6}{5}$ b. x = -6, x = 5c. x = 6, x = -6d. $x = \frac{5}{6}, x = -\frac{5}{6}$
 - 16. Which set of data is correct for this graph?

a. $y = 1, y = -\frac{1}{2}$ b. $y = 1, y = -\frac{1}{2}$ c. $y = -1, y = \frac{1}{2}$ d. $y = 1, y = \frac{1}{2}$ 14. Which parabola opens upward? a. $y = 2x - 4x^2 - 5$ b. $y = 2 + 4x - 5x^2$ c. $y = 4 - 2x^2 - 5x$ d. $y = -5x + 4x^2 + 2$

15. What are the *x*- and *y*-intercepts for the function $f(x) = x^2 - 2x + 3$?

13. Solve $2y^2 - 3y + 1 = 0$ using the quadratic formula.

Short Answer

- 17. If a parabola with equation $y = ax^2 + bx + c$ opens downward, will *a* be positive or negative?
- 18. If a parabola with equation $y = ax^2 + bx + c$ has a y-intercept above the x-axis, will c be positive or negative?

- 19. Fill in the table for the relation $y = -x^2 + 1x + 12$. y-intercept *x*-intercept(s) Axis of symmetry Vertex Domain Range
- 20. Make a table of values, then sketch the graph of the relation $y = x^2 x + 7$.
- 21. Fill in the table for the relation $y = x^2 6x 4$. USE GRAPHING CALCULATOR! Maximum or minimum Axis of symmetry Vertex
- 22. Solve $x^2 8x + 15 = 0$ by graphing the corresponding function and determining the zeros (without a graphing calculator).
- 23. Determine the roots of the corresponding quadratic equation for the graph.

- 24. A quadratic function has an equation that can be written in the form f(x) = a(x r)(x s). The graph of the function has x-intercepts at (3, 0) and (6, 0) and passes through the point (7, -4). Write the equation of the function.
- 25. Fill in the table for the quadratic function f(x) = -(x-4)(x-6).

y-intercept	
Zeros	
Axis of symmetry	
Vertex	

- 26. Sketch the graph of the relation y = (x 4)(x 6), then state the domain and range.
- 27. Determine the equation that defines a quadratic function with x-intercepts located at (4, 0) and (12, 0) and a y-intercept of (0, -24). Provide a sketch to support your work.
- 28.

Solve $4x^2 + 15x + 9 = 0$ by factoring. 29. Solve $x^2 + 3x = -4x - 12$ using the quadratic formula.

Verify your solution

Problems

30. A skier's jump can be modelled by the function $y = -4.9x^2 + 3.2x + 2.5$, where y is the skier's height above the ground, in metres, and x is the time, in seconds, that the skier is in the air.

a) Use technology to sketch graph the function from your graphing calculator.

- **b**) Determine the coordinates of the vertex.
- c) Determine the skier's maximum height in metres.
- d) Determine the domain and range of this function.
 - 31. Determine the equation for this quadratic function. Write the equation in standard form. Show all your steps.

32.

1. Graph y=x +2x+1 and state	ne tonowing.				y1	-		-	-
Vertex						-	_	-	
Max or Min??			_	_			2		
Axis of Symmetry		-	++	-		-		-	-
y-intercept	130		+-+	-		-		+	+
Domain			+++	-		-	_	-	-
Range				-					
x-intercepts							1		
Zeros								-	x
Roots		-		-	-	-		-	
Factored		-	-	-	-			-	-
form									-
Create a table of value									
create a table of values) !								
							-	-	-
			+-+	-		-		-	-
							_		_
					¥				

33. Use the discriminant to determine the number of roots:

a) $y = 2x^2 - 4x - 1$

RF2 Unit Test Review

Answer Section

MULTIPLE CHOICE

1.	ANS:	В	

- ANS: A
 ANS: D
- 4. ANS: D
- 5. ANS: A
- 6. ANS: D
- 7. ANS: C
- 8. ANS: C

SHORT ANSWER

- 17. ANS: negative
- 18. ANS: positive
- 19. ANS:

y-intercept	(0, 12)
<i>x</i> -intercept(s)	4 & -3
Axis of symmetry	x = 0.5
Vertex	(0.5, 10.25)
Domain	$x \in \mathbf{R}$
Range	$y \ge 10.25$

20. ANS:

x	у
-2	13
-1	9
0	7
1	7
2	9
3	13

9.	ANS:	В	
	10.	ANS:	С
	11.	ANS:	В
	12.	ANS:	A
	13.	ANS:	D
	14.	ANS:	D
	15.	ANS:	A
	16.	ANS:	A

21. ANS:

Maximum or minimum	minimum
Axis of symmetry	<i>x</i> = 3
Vertex	(3, -13)

- 22. ANS: x = 5, x = 3
- 23. ANS: There are no roots.

There are no roots

- 24. ANS: f(x) = -(x-3)(x-6)
- 25. ANS:

y-intercept	<i>y</i> = -24
Zeros	(4, 0), (6, 0)
Axis of symmetry	<i>x</i> = 5
Vertex	(5, 1)

26. ANS: $x \in \mathbb{R}, y \leq 1$

27. ANS:

$$y = -0.5(x - 4)(x - 12)$$

- 28. ANS: $x = -\frac{3}{4}, x = -3$
- 29. ANS: x = -4, x = -3

a)

- c) The skier's maximum height is 3.0 m.
- **d**) Domain: $0 \le x \le 1.1$ Range: $0 \le y \le 3.0$

31. ANS:

The *x*-intercepts are (-5, 0) and (-2, 0), so r = -5 and s = -2. The graph opens upward so a > 0. y = a(x - r)(x - s)y = a[x - (-5)](x - (-2))y = a(x + 5)(x + 2)

The *y*-intercept is (0, 20). y = a(x + 5)(x + 2) 20 = a(0 + 5)(0 + 2) 20 = 10a 2 = aSo, y = 2(x + 5)(x + 2)

In standard form: y = 2(x + 5)(x + 2)

y = 2(x + 3)(x + 2) $y = 2(x^{2} + 5x + 2x + 10)$ $y = 2x^{2} + 14x + 20$

33. Use the discriminant to determine the number of roots:

a) $y = 2x^2 - 4x - 1$	b) $y = x^2 + 4x + 100$
$b^2 - 4ac$	$b^2 - 4ac$
(-4) ² - 4(2)(-1)	(4) ² - 4(1)(100)
16 – (-8)	16 - 400
+24 (2 roots)	-384 (no roots)

