REVIEW OF TERMS AND CONNECTIONS

WORDS You Need To Communicate Effectively

- **1.** Match each term with an image or example.
 - a) evaluating a function
 - **b**) reflection symmetry
 - c) factored polynomial expression
 - **d**) vertical-line test
 - e) y-intercept
 - **f**) linear relation

- i) 2x + 3y = 7
- **ii**) 3(x 3)(x + 4)
- **iii)** f(3) = 2(3) + 7 or 13

NEL

CONNECTIONS You Need for Success Identifying Functions

A relation can be described by a set of points, an equation, or a graph. The domain of a relation is the set of all its *x*-values, and its range is the set of all its *y*-values.

Relation	Domain	Range
{(-1, 2), (3, -4), (0, 2), (3, 1)}	{-1, 0, 3}	{-4, 1, 2}
3x+7y=0	$\{x \in R\}$	$\{y \in R\}$
$5^{\uparrow y}$ 4^{-} 2^{-} 2^{-} $-5^{-} 4^{-} 3^{-2} -1^{-} 0^{-} 1^{-} 2^{-} 3^{-} 4^{-} 5^{-}$ -2^{-} -3^{-} -4^{-} -5^{-}	{ <i>x</i> ≥ −2, <i>x</i> ∈ R}	{ <i>y</i> ∈ R }

Since a function is a relation that assigns exactly one *y*-value to each *x*-value, a relation is not a function if the same *x*-value has two or more *y*-values. This is the basis for the vertical-line test.

Another way to identify whether a relation is a function is to look at its equation. Linear relations are always functions, *except* when they are of the form x = constant. (A vertical line has infinitely many *y*-values with the same *x*-value.)

2. Determine whether each relation is a function, and explain why or why not.

a) {(1, 3), (0, -1), (3, 2), (1, 2)} **b)** x - 2y = 5 **c)** x = -2

3. Use the vertical-line test to determine whether each relation is a function. **b**) **b**

5^{y}		
4-	•	
3-		•
-2-		
		• x
101	-2 $\frac{1}{3}$ $\frac{1}{4}$	567
-2-•		

a)

	$2^{\uparrow y}$	
	1-	X
-4-3-2	2 + 0 + 2	3456
	-2-	
	13↓	

Solving Algebraic Equations

Algebraic equations are solved to determine the value of an unknown. Solving an algebraic equation requires a systematic approach. How to manipulate algebraic expressions, the knowledge of inverse operations, and the order of operations are all useful when solving equations.

Solve for *x*:

2(3x+5) = x

6x + 10 = x	Expand the left side of the equation.
6x + 10 - x = x - x 5x + 10 = 0	Subtract x from each side to begin isolating the variable x on one side of the equation.
5x + 10 - 10 = 0 - 10 5x = -10	Subtract 10 from each side.
$\frac{5x}{5} = \frac{(-10)}{5}$	Divide each side by 5 to isolate <i>x</i> .
x = -2	

4. Solve each equation.

a) 3x + 7 = 13 **b)** 3 - 4x = 5 **c)** $4x^2 = 100$

Graphing Linear Relations

The method you choose to graph a linear relation depends on the form in which it is given. The slope-intercept form of a linear relation is y = mx + b, where *m* is the slope of the relation and *b* is its *y*-intercept. For example,

A linear relation in point-slope form uses a given point with the slope. For example,

y-2 = -3(x-1) contains the point (1, 2) and has slope -3 $y-3 = \frac{1}{2}(x+6)$ contains the point (- 6, 3) and has slope $\frac{1}{2}$.

5. Identify the form of each linear relation.

a) y = x + 5 **b**) y + 1 = -3(x - 1) **c**) y - 5 = 3x

6. Graph each linear relation in question 5.

Name_

Factoring Polynomial Expressions

Some, but not all, polynomial expressions can be factored.

Factoring a second-degree polynomial expression with one variable can be broken down into steps:

Step 1: If the x^2 term has a coefficient, factor the coefficient out of the whole expression:

 $3x^2 - 12x + 9$ $3(x^2 - 4x + 3)$

Step 2: Inside the brackets, look for pairs of integers whose product is the constant term:

$$(1)(3) = 3$$
 or $(-1)(-3) = 3$

Step 3: Check the sum of each pair of integers to match the coefficient of the x term, in this case -4:

1 + 3 = 4 **X** 1 + (-3) = -4 **V**

Step 4: If there is a pair of integers that meets the criteria, use them to write the factored form:

3(x - 1)(x - 3)

7. Factor each quadratic expression, if possible.

a) $x^2 + 2x - 15$ **b)** $-3x^2 + 15x - 12$ **c)** $x^2 - 7x + 3$

PRACTICING

8. Determine, with reasons, whether each relation is a function.

a)
$$\{(0, 3), (-1, 2), (2, 3), (5, 0)\}$$

b) x = 2y - 5

d)

9. Solve each equation.

a)
$$-\frac{1}{2}x^2 - 32 = 0$$
 b) $2(x+5) = 9$ **c**) $x(x+3) = (x-1)^2$

- **10.** Graph each linear relation.
 - **a)** y + 2 = 3(x 1) **b)** $y = \frac{1}{2}x 1$
 - c) line passing through (3, 2) with slope -2
- **11.** Factor each quadratic expression, if possible.

a) $2x^2 - 2x - 24$ **b)** $x^2 + 4x + 7$ **c)** $-x^2 + 2x + 8$

