\qquad
\qquad

REVIEW OF TERMS AND CONNECTIONS

WORDS You Need To Communicate Effectively

1. Match each term with an image or example.
a) evaluating a function
i) $2 x+3 y=7$
b) reflection symmetry
c) factored polynomial expression
d) vertical-line test
e) y-intercept
f) linear relation
ii) $3(x-3)(x+4)$
iii) $f(3)=2(3)+7$ or 13
iv)

v)

vi)

CONNECTIONS You Need for Success Identifying Functions

A relation can be described by a set of points, an equation, or a graph. The domain of a relation is the set of all its x-values, and its range is the set of all its y-values.

Since a function is a relation that assigns exactly one y-value to each x-value, a relation is not a function if the same x-value has two or more y-values. This is the basis for the vertical-line test.
Another way to identify whether a relation is a function is to look at its equation. Linear relations are always functions, except when they are of the form $x=$ constant. (A vertical line has infinitely many y-values with the same x-value.)
2. Determine whether each relation is a function, and explain why or why not.
a) $\{(1,3),(0,-1),(3,2),(1,2)\}$
b) $x-2 y=5$
c) $x=-2$
3. Use the vertical-line test to determine whether each relation is a function.
a)

b)

Solving Algebraic Equations

Algebraic equations are solved to determine the value of an unknown. Solving an algebraic equation requires a systematic approach. How to manipulate algebraic expressions, the knowledge of inverse operations, and the order of operations are all useful when solving equations.

Solve for x :

$2(3 x+5)=x$
$6 x+10=x$ Expand the left side of the equation. $6 x+10-x=x-x$ $5 x+10=0$ Subtract x from each side to begin isolating the variable x on one side of the equation. $5 x+10-10=0-10$ $5 x=-10$ Subtract 10 from each side. $\frac{5 x}{5}=\frac{(-10)}{5}$ $x=-2$

4. Solve each equation.
a) $3 x+7=13$
b) $3-4 x=5$
c) $4 x^{2}=100$

Graphing Linear Relations

The method you choose to graph a linear relation depends on the form in which it is given. The slope-intercept form of a linear relation is $y=m x+b$, where m is the slope of the relation and b is its y-intercept. For example,

A linear relation in point-slope form uses a given point with the slope. For example,

$$
\begin{aligned}
& y-2=-3(x-1) \text { contains the point }(1,2) \text { and has slope }-3 \\
& y-3=\frac{1}{2}(x+6) \text { contains the point }(-6,3) \text { and has slope } \frac{1}{2}
\end{aligned}
$$

5. Identify the form of each linear relation.
a) $y=x+5$
b) $y+\mathbf{1}=-3(x-1)$
c) $y-5=3 x$
6. Graph each linear relation in question 5 .

Factoring Polynomial Expressions

Some, but not all, polynomial expressions can be factored.
Factoring a second-degree polynomial expression with one variable can be broken down into steps:

Step 1: If the x^{2} term has a coefficient, factor the coefficient out of the whole expression:

$$
\begin{aligned}
& 3 x^{2}-12 x+9 \\
& 3\left(x^{2}-4 x+3\right)
\end{aligned}
$$

Step 2: Inside the brackets, look for pairs of integers whose product is the constant term:

$$
(1)(3)=3 \text { or }(-1)(-3)=3
$$

Step 3: Check the sum of each pair of integers to match the coefficient of the x term, in this case -4 :

$$
1+3=4 \quad x \quad 1+(-3)=-4
$$

Step 4: If there is a pair of integers that meets the criteria, use them to write the factored form:

$$
3(x-1)(x-3)
$$

7. Factor each quadratic expression, if possible.
a) $x^{2}+2 x-15$
b) $-3 x^{2}+15 x-12$
c) $x^{2}-7 x+3$

PRACTICING

8. Determine, with reasons, whether each relation is a function.
a) $\{(0,3),(-1,2),(2,3),(5,0)\}$
b) $x=2 y-5$
c)

9. Solve each equation.
a) $\frac{1}{2} x^{2}-32=0$
b) $2(x+5)=9$
c) $x(x+3)=(x-1)^{2}$
10. Graph each linear relation.
a) $y+2=3(x-1)$
b) $y=\frac{1}{2} x-1$
c) line passing through $(3,2)$ with slope -2
11. Factor each quadratic expression, if possible.
a) $2 x^{2}-2 x-24$
b) $x^{2}+4 x+7$
c) $-x^{2}+2 x+8$
\qquad
d)

12. Solve each equation.
a) $-\frac{1}{2} x^{2}-32=0$
b) $2(x+5)=9$
c) $x(x+3)=(x-1)^{2}$
13. Graph each linear relation.
a) $y+2=3(x-1)$
b) $y=\frac{1}{2} x-1$
c) line passing through $(3,2)$ with slope -2
14. Factor each quadratic expression, if possible.
a) $2 x^{2}-2 x-24$
b) $x^{2}+4 x+7$
c) $-x^{2}+2 x+8$
