5.4

Sept. 30, 2013

Oct. 2, 2014 Sept. 30, 2015

Feb. 11, 2020

Optimization Problems I: Creating the Model

New Vocabulary/Symbols

- optimization problem
- constraint
- objective function
- feasible region

<u>An optimization</u> problem is a problem in which we find the greatest or least value of functions. The method used to solve such problems is called **linear programming** and consists of two parts:

- 1. An objection function tells us the quantity we want to maximize or minimize.
- 2. The system of constraints consists of linear <u>inequalities</u> whose overlapping areas create the <u>feasible</u> region. The solution is contained in this region.

A **constraint** is a limiting condition of the optimization problem being modeled, represented by a linear inequality.

INVESTIGATE the Math

A toy company manufactures two types of toy vehicles sport-utility vehicles.

Because the supply of materials is limited, no more than 40 racing cars

and 60 sport-utility vehicles can be made each day. • However, the company can make 70 or more vehicles, in total, each day

• It costs \$8 to make a racing car and \$12 to make a sport-utility vehicle. There are many possible combinations of racing cars and sport-utility vehicles that could be made. The company wants to know what combinations will result in the minimum and maximum costs, and what those costs will be

A How can this situation be modelled?

- A. What are the two variables in this situation?
- Write a system of three linear inequalities to represent these
 - the total number of racing cars that can be made
 - the total number of sport-utility vehicles that can be made
 - the total number of vehicles that can be made
- What do you know about the restrictions on the domain and range of the variables? Explain.
- D. Graph the system. Choose at least two points in the solution region that are possible solutions to the system.
- E. What quantity in this situation needs to be minimized and maximized? Write an equation to represent how the two variables relate to this quantity.

Answers

- X y
 A. number of sports utility vehicles and number of racing cars
- **B.** Let s represent the number of sports utility vehicles, and let r represent the number of racing cars.

Total number of racing cars: $r \le 40$ $y \le 40$

- C. The restrictions are $s \in W$ and $r \in W$, because only whole numbers of vehicles make sense.
- D. e.g., (50, 20) and (40, 35)

E. The total cost of producing the two types of toys, *C*, must be optimized:

6Ws4e1.mp4

6Ws4e2.mp4