Section 3.6 Order of Operations with Rational Numbers

В	Do the operations in brackets first
Е	Next, evaluate any exponents
D M	Then, divide and multiply in order from left to right
$\left. \begin{array}{c} A \\ S \end{array} \right\}$	Finally, add and subtract in order from left to right

Order of Operations with Decimals

Example # 1	(-2.4) ÷ 1.2 − 7 × 0.2 = -2 − 7 × 0.2 = -2 − 1.4 = -2 + (-1.4) = -3.4	Divide First Then, multiply To subtract, add the opposite
Example # 2	$(-3.4 + 0.6) + 4^2 \times 0.2$ = - 2.8 + 4 ² × 0.2 = - 2.8 + 16 × 0.2 = - 2.8 + 3.2 = 0.4	Brackets First Then evaluate the power Then multiply

Order of Operations with Fractions

Example # 1	$\left(\frac{3}{4} - \frac{7}{8}\right) \div \left(-\frac{5}{16}\right)$ $\left(\frac{6}{8} - \frac{7}{8}\right) \div \left(-\frac{5}{16}\right)$	Subtract in the brackets first Use a common denominator of 8
	$\left(-\frac{1}{8}\right) \div \left(-\frac{5}{16}\right)$	To divide, multiply by the reciprocal
	$\left(-\frac{1}{8}\right) \times \left(-\frac{16}{5}\right)$ $\left(-\frac{1}{8}\right) \times \left(-\frac{16}{5}\right)$	Look for common factors Both factors are negative, so the
	$=\frac{2}{5}$	product is positive.
Example #2	$\left(-\frac{2}{3}\right)\times\frac{1}{6}+\frac{1}{2}$	Multiply First
	$\left(-\frac{2^{1}}{3}\right) \times \frac{1}{6^{3}} + \frac{1}{2}$	Look for common factors
	$\left(-\frac{1}{9}\right) + \frac{1}{2}$ $-\frac{2}{18} + \frac{9}{18}$	Add. Use a common denominator of 18.
	$=\frac{7}{18}$	

Example # 3

$$\begin{pmatrix} 2\frac{1}{3} \end{pmatrix} + \begin{pmatrix} 1\frac{1}{4} \end{pmatrix} \times \begin{pmatrix} -\frac{2}{3} \end{pmatrix} \quad \text{Convert mixed numbers to} \\ \text{improper fractions} \\ \begin{pmatrix} \frac{7}{3} \end{pmatrix} + \begin{pmatrix} \frac{5}{4} \end{pmatrix} \times \begin{pmatrix} -\frac{2}{3} \end{pmatrix} \quad \text{Multiply first} \\ \begin{pmatrix} \frac{7}{3} \end{pmatrix} + \begin{pmatrix} -\frac{10}{12} \end{pmatrix} \quad \text{Add} \\ \text{Use a common denominator of 12} \\ \frac{28}{12} + \begin{pmatrix} -\frac{10}{12} \end{pmatrix} \quad \text{Convert improper fractions to mixed} \\ numbers \\ = 1\frac{6}{12} = 1\frac{1}{2} \quad \text{Always Reduce} \\ \end{bmatrix}$$

Error Questions

1. A student's solution to a problem, to the nearest hundredth, is shown below. The solution is incorrect. Identify the errors. Provide a correct solution.

$$(-8.2)^2 \div (-0.2) - 2.9 \times (-5.7)$$

= 67.24 ÷ (-0.2) - 2.9 × (-5.7)
= 67.24 ÷ (-0.2) - 16.53
= 67.24 ÷ (16.73)
~ 4.02

Answer: $(-8.2)^2 \div (-0.2) - 2.9 \times (-5.7)$ $67.24 \div (-0.2) - 2.9 \times (-5.7)$ $-336.2 - 2.9 \times (-5.7)$ -336.2 - 16.53-352.73 2. Two students were asked to evaluate:

 $(-8) - 2(24 \div (-8))^2$

Here are their calculations.

Student 1Student 2
$$(-8) - 2(24 \div (-8))^2$$
 $(-8) - 2(24 \div (-8))^2$ $= (-10)(24 \div (-8))^2$ $= (-8) - 2(-3)^2$ $= (-10)(-3)^2$ $= (-8) - (-6)^2$ $= (-10)(9)$ $= -8 - 36$ $= -90$ $= -44$

Why did both these students get incorrect answers? What is the correct answer?

Answer:

Student 1Student 2
$$(-8) - 2024 \div (-8))^2$$
 $(-8) - 2(24 \div (-8))^2$ $= (-10)(24 \div (-8))^2$ $= (-8) - 2(-3)^2$ $= (-10)(-3)^2$ $= (-8) - (-6)^2$ $= (-10)(9)$ $= -8 - 36$ $= -90$ $= -44$

Student 1 subtracted first. They didn't follow BEDMAS. Student 2 multiplied 2 and 3 when they should have done the exponent next.

Correct Answer: $(-8) - 2(24 \div (-8))^2$ $= (-8) - 2(-3)^2$ = (-8) - 2(9) = (-8) - 18= -26 3. The following test question was marked out of 3. What mark would you give this student? Justify your answer.

Calculate:	$\frac{-7}{8} - \frac{3}{4} \div \frac{1}{5} - \frac{1}{4}$
Student's Answer:	$= \frac{-7}{8} - \frac{3}{4} \times \frac{1}{5} - \frac{1}{4}$
	$= \frac{-7}{8} - \frac{3}{20} - \frac{1}{4}$
	$= \frac{-7}{40} - \frac{3}{40} - \frac{1}{40}$
	$=\frac{-11}{40}$

The student might get 1/3. They knew they had to change the divide to a multiply but forgot to reciprocal the second fraction. They also knew they had to get common denominators but didn't use equivalent fractions and adjust the numerators too.

Correct Answer

$$\frac{-7}{8} - \frac{3}{4} \times \frac{5}{1} - \frac{1}{4}$$
$$= \frac{-7}{8} - \frac{15}{4} - \frac{1}{4}$$
$$= \frac{-7}{8} - \frac{30}{8} - \frac{2}{8}$$
$$= \frac{-39}{8}$$