Section 3.6 Order of Operations with Rational Numbers

B Do the operations in brackets first
E Next, evaluate any exponents
$\left.\begin{array}{l}\text { D } \\ M\end{array}\right\}$ Then, divide and multiply in order from left to right
$\left.\begin{array}{l}\text { A } \\ \text { S }\end{array}\right\}$ Finally, add and subtract in order from left to right

Order of Operations with Decimals
Example \# $1 \quad(-2.4) \div \mathbf{1 . 2 - 7 \times 0 . 2}$
Divide First
$=-2-7 \times 0.2 \quad$ Then, multiply
$=-2-1.4$
To subtract, add the opposite
$=-2+(-1.4)$

$$
=-3.4
$$

Example \# $2 \quad(-3.4+\mathbf{0 . 6})+4^{2} \times 0.2$
Brackets First
$=-2.8+4^{2} \times 0.2$
$=-2.8+16 \times 0.2$
$=-2.8+3.2$
$=0.4$

Order of Operations with Fractions

Example \# $1 \quad\left(\frac{3}{4}-\frac{7}{8}\right) \div\left(-\frac{5}{16}\right)$
$\left(\frac{6}{8}-\frac{7}{8}\right) \div\left(-\frac{5}{16}\right)$
$\left(-\frac{1}{8}\right) \div\left(-\frac{5}{16}\right)$
$\left(-\frac{1}{8}\right) \times\left(-\frac{16}{5}\right)$

$$
\left(-\frac{1}{\otimes_{1}}\right) \times\left(-\frac{1 \phi^{2}}{5}\right)
$$

$$
=\frac{2}{5}
$$

Example \#2 $\left(-\frac{2}{3}\right) \times \frac{1}{6}+\frac{1}{2}$

$$
\left(-\frac{k^{1}}{3}\right) \times \frac{1}{d^{3}}+\frac{1}{2}
$$

$$
\left(-\frac{1}{9}\right)+\frac{1}{2}
$$

$$
-\frac{2}{18}+\frac{9}{18}
$$

$$
=\frac{7}{18}
$$

Subtract in the brackets first Use a common denominator of 8

To divide, multiply by the reciprocal

Look for common factors

Both factors are negative, so the product is positive.

Multiply First

Look for common factors

Add.
Use a common denominator of 18 .

$$
\begin{array}{lll}
\text { Example \# } 3 & \left(2 \frac{1}{3}\right)+\left(1 \frac{1}{4}\right) \times\left(-\frac{2}{3}\right) & \begin{array}{l}
\text { Convert mixed numbers to } \\
\text { improper fractions }
\end{array} \\
& \left(\frac{7}{3}\right)+\left(\frac{5}{4}\right) \times\left(-\frac{2}{3}\right) & \text { Multiply first } \\
\left(\frac{7}{3}\right)+\left(-\frac{10}{12}\right) & \begin{array}{l}
\text { Add } \\
\text { Use a common denominator of } 12
\end{array} \\
& \frac{28}{12}+\left(-\frac{10}{12}\right) & \begin{array}{l}
\text { Convert improper fractions to mixed } \\
=\frac{18}{12}
\end{array} \\
=1 \frac{6}{12}=1 \frac{1}{2} & \text { numbers }
\end{array}
$$

Error Questions

1. A student's solution to a problem, to the nearest hundredth, is shown below. The solution is incorrect. Identify the errors. Provide a correct solution.

$$
\begin{aligned}
& (-8.2)^{2} \div(-0.2)-2.9 \times(-5.7) \\
= & 67.24 \div(-0.2)-2.9 \times(-5.7) \\
= & 67.24 \div(-0.2)-16.53 \\
= & 67.24 \div(16.73) \\
& \sim 4.02
\end{aligned}
$$

Answer: $\quad(-8.2)^{2} \div(-0.2)-2.9 \times(-5.7)$

$$
67.24 \div(-0.2)-2.9 \times(-5.7)
$$

$$
-336.2-\underline{2.9 \times(-5.7)}
$$

$$
-336.2-16.53
$$

2. Two students were asked to evaluate:

$$
(-8)-2(24 \div(-8))^{2}
$$

Here are their calculations.

Student 1
$(-8)-2(24 \div(-8))^{2}$
$=(-10)(24 \div(-8))^{2}$
$=(-10)(-3)^{2}$
$=(-10)(9)$
$=-90$

Student 2
$(-8)-2(24 \div(-8))^{2}$
$=(-8)-2(-3)^{2}$
$=(-8)-(-6)^{2}$
$=-8-36$
$=-44$

Why did both these students get incorrect

 answers? What is the correct answer?Answer:

Student 1

$(-8)-224 \div(-8))^{2}$
$=(-10)(24 \div(-8))^{2}$
$=(-10)(-3)^{2}$
$=(-10)(9)$
$=-90$

Student 1 subtracted first.
They didn't follow BEDMAS.

Student 2

$$
\begin{aligned}
& (-8)-2(24 \div(-8))^{2} \\
& =(-8)-2(-3) \\
& =(-8)-(-6)^{2} \\
& =-8-36 \\
& =-44
\end{aligned}
$$

Student 2 multiplied 2 and 3 when they should have done the exponent next.

Correct Answer:

$$
\begin{aligned}
& (-8)-2(24 \div(-8))^{2} \\
& =(-8)-2(-3)^{2} \\
& =(-8)-2(9) \\
& =(-8)-18 \\
& =-26
\end{aligned}
$$

3. The following test question was marked out of 3 . What mark would you give this student? Justify your answer.

$$
\text { Calculate: } \quad \frac{-7}{8}-\frac{3}{4} \div \frac{1}{5}-\frac{1}{4}
$$

Student's Answer:

$$
\begin{gathered}
=\frac{-7}{8}-\frac{3}{4} \times \frac{1}{5}-\frac{1}{4} \\
=\frac{-7}{8}-\frac{3}{20}-\frac{1}{4} \\
=\frac{-7}{40}-\frac{3}{40}-\frac{1}{40} \\
=\frac{-11}{40}
\end{gathered}
$$

The student might get $1 / 3$. They knew they had to change the divide to a multiply but forgot to reciprocal the second fraction. They also knew they had to get common denominators but didn't use equivalent fractions and adjust the numerators too.

Correct Answer

$$
\begin{gathered}
\frac{-7}{8}-\frac{3}{4} \times \frac{5}{1}-\frac{1}{4} \\
=\frac{-7}{8}-\frac{15}{4}-\frac{1}{4} \\
=\frac{-7}{8}-\frac{30}{8}-\frac{2}{8} \\
=\frac{-39}{8}
\end{gathered}
$$

