1. Classify each of the following as acute, right, obtuse, straight, or reflex angles.
a)

b)

c)

d)

e)

f)

2. Fill in the missing parts in the table. If no such angle exists, explain why.

ANGLE CALCULATIONS	Supplement	Resulting angle measure after the angle is bisected	
Angle	Complement		
58°			47°
		93°	
153°	25°		

3. Name the relationship between the indicated pairs of angles.

a) $\angle 3$ and $\angle 5$
b) $\angle 4$ and $\angle 5$
c) $\angle 1$ and $\angle 3$
d) $\angle 2$ and $\angle 6$
4. In the diagram below, ℓ_{1} is parallel to ℓ_{2}. Determine the measures of the indicated angles and explain your reasons. Write the answers in the order that you calculated them.

5. Given the following diagram, what must be the measures of $\angle 1$ and $\angle 2$ if $B E$ is parallel to CD? State your reasons.

6. In trapezoid PQRS, PS is parallel to QR. What are the measures of $\angle 1$ and $\angle 2$?

7. If ℓ_{1} is parallel to ℓ_{2}, and ℓ_{3} is parallel to ℓ_{5}, what are the following angle measures?

a) the value of $\angle 1$
b) the value of $\angle 2$ that will make ℓ_{4} perpendicular to ℓ_{2}
8. On the map below, what is the true bearing from the following points?

a) A to B
b) B to C
9. Fred states that if ℓ_{1} is parallel to ℓ_{2}, and ℓ_{2} is parallel to ℓ_{3}, then it follows that ℓ_{1} is parallel to ℓ_{3}. Is Fred right? Show your answer using a diagram.
10. In the diagram below, ℓ_{1} is parallel to ℓ_{2}, and ℓ_{2} is parallel to ℓ_{3}. State two angles whose measures are the same as $\angle 7$. Explain your reasoning.

Angles and Parallel line Review Solutions

1. a) obtuse b) acute c) reflex d) straight e) right f) obtuse
2.

ANGLE CALCULATIONS			
Angle	Complement	Supplement	Resulting angle measures after angle is bisected
58°	32°	122°	29°
94°	Does not exist, because angle is greater than 90°	86°	47°
87°	Does not exist, because angle is greater than 90°.	93°	43.5°
153°	Does not exist, because angle is greater than 90°.	27°	76.5°
65°	25°	115°	32.5°

3. a) alternate interior angles b) interior angles on the same side of the transversal
c) vertically opposite angles d) corresponding angles
4. $\angle 2$ is supplementary to the 62° angle. $\angle 2=118^{\circ}$
$\angle 4$ is vertically opposite to the 62° angle or supplementary to $\angle 2 .<4=62^{\circ}$
$\angle 3$ is the alternate interior angle to the 62° angle, and is an interior angle on the same side of the transversal as $\angle 2 . \angle 3=62^{\circ}$
$\angle 1$ is an interior angle on the same side of the transversal to the 67° angle. $\angle 1=113^{\circ}$
5. $\angle 1$ is an interior angle on the same side of the transversal (line A) as $\angle \mathrm{D}\left(68^{\circ}\right)$. $\angle 1=112^{\circ} \angle 2$ is the corresponding angle to $\angle \mathrm{C}\left(75^{\circ}\right)$, given transversal AC. $\angle 2=75^{\circ}$
6. $\angle 1=23^{\circ} \quad<2=23^{\circ}$
7. a) $\angle 1=72^{\circ}$
b) $\angle 2=18^{\circ}$
8. a) 90°
b) 185°
9.

Fred is correct. 1 is equal to 3 and ℓ_{1} is parallel to ℓ_{3} since the corresponding angles are equal.
10. $<2=<7$

Using ℓ_{1} and ℓ_{2}, and transversal $t_{1},<2$ and <7 are alternate interior angles.

$$
<5=<7
$$

Using ℓ_{1} and ℓ_{2}, and transversal $t_{1},<5$ and <7 are corresponding angles.
$<4=<7$
Using ℓ_{1} and ℓ_{3}, and transversal $t_{1},<4$ and <7 are alternate interior angles

