

(1) Angles labelled with capital letters

2 Sides are labelled with lower case letters

→ correspond to angles opposite them

3) Pythogorean Theorem $a^2 + b^2 = c^2$

a *b are called legs
c is the hypotenuse
(longest side of 1)

There are trigonometric ratios that work with right D's

5 ratios that relate side lengths to angles

Sine
$$A = \frac{\text{opposite Side to } A}{\text{hypotenuse}} = \frac{a}{c}$$

Sine $B = \frac{\text{opposite Side to } B}{\text{hypotenuse}} = \frac{b}{c}$

hypotenuse

Cosine
$$A = adjacent side to A = b$$

hypotenuse

Cos A = adjacent

Tangent
$$A = \frac{\text{opposite side to } A}{\text{adjacent side to } A} = \frac{a}{b}$$

Tan $A = \frac{\text{opposite}}{\text{adjacent}}$

Tangent $B = \frac{\text{opposite side to } B}{\text{adjacent side to } B} = \frac{b}{a}$

Calculator Practice

- 1) calculator mode Must be set to degree "DEG" "D"
- 12 know how to key in information

Ex: Find to 9 decimal places

Sin
$$90^{\circ} = 1$$
 Cos $90^{\circ} = 0$ Tan $90^{\circ} = N.P.$
 $\frac{OPP}{hyp} = \frac{hyp}{hyp} = 1$
 $\frac{adj}{hyp} = \frac{O}{c} = 0$
 $\frac{adj}{hyp} = \frac{O}{c} = 0$

is the hyp.

you can also use the ratios to find angles using the inverse of the ratios (sin-1, cos-1, tani)

Example: Find A if:

Sin
$$A = .5$$
 Cos $A = .75$
 2^{nd} Sin $.5 = 30^{\circ}$ $A = 41.4^{\circ}$

Sin
$$A = \frac{1}{5}$$
 Cos $A = \frac{7}{8}$
2nd sin (.2) = 11.5° $A = 29^{\circ}$
2nd sin (1:5)

$$Sin A = \frac{5}{4}$$

* NOT POSSIBLE because opposite side cannot be longer than hypotenuse.

Cross Multiplication in Equivalent Fractions Example: Solve for x

$$\frac{3}{8}x^{3}x^{3}$$

$$\frac{6}{x} = \frac{8}{1}$$

$$8x = (3)(42)$$

$$\frac{6}{8} = \frac{8x}{8}$$

$$x = 126$$

$$x = 15.75$$

$$\frac{6}{8} = x$$

$$x = 17$$

$$Sin Sox = x$$

$$11.Sin SO = x$$

$$8.43 = x$$

$$Cos 60 = 6$$

$$Cos 60 = 6$$

$$Cos 60$$

$$X = 6$$

$$Cos 60$$

$$X = 12$$

Cross Multiplying - Remember to isolate the variable

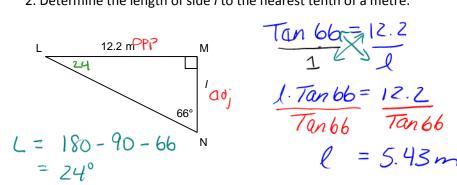
Examples

$$\frac{2}{x} = \frac{7}{4}$$

$$\frac{5}{3} = \frac{p}{9}$$

$$\frac{1.5}{6} = \frac{1}{t}$$

1. Determine the measure of \angle D to the nearest tenth of a degree.


Tan
$$D = \frac{3}{9}$$

$$9^{2}+3^{2}=e^{2}$$

$$8l+9=e^{2}$$

$$9 = e^{2}$$

$$9^{2}+3^{2}=e^{2}$$

 $8l+9=e^{2}$
 $\sqrt{90}=e^{2}$
 $9.5=e$

$$12.2^2 + 5.43 = m^2$$
 $178.32 = m^2$
 $13.35 = m$

3. Determine the measure of \angle Y to the nearest tenth of a degree.

$$y^{2} = 11^{2} - 5.1^{2}$$

$$y^{2} = 94.99$$

$$y = 9.75$$

$$\omega = 180 - 90 - 62$$

= 23°